Sialic acid (N-Acetylneuraminic acid)

Product description

Sialic acid
(N-Acetylneuraminic acid)

 

Molecular Formula: C11H19NO9
CAS Number: 131-48-6
Application:  Food industry, Pharmaceuticals, Health care and Functional Products; Food additives; Nutritional fortifier; Medical raw materials;

 

Description:
N-acetylneuraminic acid is an N-acyl derivative of neuraminic or acid amino sugar derivative, derived from N-acetylmannosamine and pyruvic acid. It is an important constituent of glycoproteins and glycolipids. N-acetylneuraminic acid occurs in many polysaccharides, glycoproteins, and glycolipids in animals and bacteria.
N-Acetylneuraminic acid is an integral part of sialic acids (SAs), important functional sugars that play an important role in maintaining and improving brain health, detoxification, antibacterial, and immune enhancement. n-Acetylneuraminic acid is biologically useful for neurotransmission, leukocyte extravasation, viral or bacterial infection, and carbohydrate-protein recognition. n- Acetylneuraminic acid is used to study its biochemistry, metabolism and absorption in vivo and in vitro.
Sialic acid-rich glycoproteins (sialoglycoproteins) bind selectin in humans and other organisms. Metastatic cancer cells often express a high density of sialic acid-rich glycoproteins. This overexpression of sialic acid on surfaces creates a negative charge on cell membranes. This creates repulsion between cells (cell opposition) and helps these late-stage cancer cells enter the blood stream.
Sialic acid also plays an important role in human influenza infections.
Many bacteria also use sialic acid in their biology, although this is usually limited to bacteria that live in association with higher animals (deuterostomes). Many of these incorporate sialic acid into cell surface features like their lipopolysaccharide and capsule, which helps them evade the innate immune response of the host.[6] Other bacteria simply use sialic acid as a good nutrient source, as it contains both carbon and nitrogen and can be converted to fructose-6- phosphate, which can then enter central metabolism.
Sialic acid-rich oligo saccharides on the glyco conjugates ( glyco lipids, glyco proteins, proteoglycans) found on surface membranes help keep water at the surface of cells . The sialic acid - rich regions contribute to creating a negative charge on the cells' surfaces. Since water is a polar molecule with partial positive charges on both hydrogen atoms, it is attracted to cell surfaces and membranes. This also contributes to cellular fluid uptake.
Sialic acid can "hide" mannose antigens on the surface of host cells or bacteria from mannose - binding lectin . This prevents activation of complement.
Sialic acid in the form of poly sialic acid is an unusual posttranslational modification that occurs on the neural cell adhesion molecules (NCAMs). In the synapse, the strong negative charge of the polysialic acid prevents NCAM cross-linking of cells.
Both sialic acid and neuraminic acid are loosely used to refer to conjugates of neuraminic acid. N-Acetylneuraminic acid is often found as the terminal sugar of cell surface glycoproteins. Cell surface glycoproteins have important roles in cell recognition and interaction as well as in cell adhesion. Membrane glycoproteins are also important in tumor growth and metastases. 

ENQUIRY
BACK